

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science Honours in Applied Mathematics	
QUALIFICATION CODE: 08BSMH	LEVEL: 8
COURSE CODE: ACA801S	COURSE NAME: ADVANCED COMPLEX ANALYSIS
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

	FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Dr S.N. NEOSSI NGUETCHUE	
MODERATOR:	Prof F. MASSAMBA	

INSTRUCTIONS

- 1. Answer ALL the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations
- 3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Attachments

None

Problem 1 [15 marks]

Let $O \subset \mathbb{C}$ be an open set and let $f \colon O \to \mathbb{C}$ be a holomorphic function.

- 1.1 What is an isolate singularity of f? [3]
- 1.2 When is $c \in O$ a removable singularity and how does one remove such a singularity? [4]
- 1.3 What is an essential singularity of f? [3]
- 1.4 What is a pole of f and what is the order of a pole? [5]

Problem 2 [30 marks]

2.1 Determine the order of the pole of each of the following functions at the indicated point:

2.1.1
$$f(x) = \frac{1}{z \sin z}$$
 at $z_0 = 0$; [6]

2.1.2
$$f(x) = \frac{e^{z^2} - 1}{z^4}$$
 at $z_0 = 0$; [6]

- **2.2** Show that the functions given by $f(x) = \frac{\sin z}{z}$ at $z_0 = 0$ and $g(x) = \frac{e^{z-1} 1}{z 1}$ at $z_0 = 1$ possess a removable singularity at the indicated point. [9]
- **2.3** For the given functions $f(z) = (z^2 1)\frac{1}{z 1}$ and $g(x) = \frac{z^2}{(z i)^3}$, determine whether they possess:
- (i) Removable singularity;
- (ii) Pole(s), or
- (iii) Essential singularity.

If it is a pole, then determine the order of the pole.

Problem 3 [25 marks]

Let $\sum_{k=0}^{\infty} a_k(z-c)^k$ be a convergent power series and $\varepsilon > 0$ such that $B_{\varepsilon}(c) \subset D(c,R)$, where D(c,R)

is the disk of convergence of the power series.

Let $f: B_{\varepsilon}(c) \to \mathbb{C}$ be defined by

$$f(z) := \sum_{k=0}^{\infty} a_k (z - c)^k.$$

3.1 Prove that f is n-times differentiable for all $n \in \mathbb{N}$ and that

$$f^{(n)}(z) = \sum_{k=n}^{\infty} k(k-1)\cdots(k-n+1)a_k(z-c)^{k-n}$$

for all $n \in \mathbb{N}$ and all $x \in B_{\varepsilon}(c)$. With respect to differentiability what kind of function is f? [15]

3.2 Show that

$$\frac{f^{(n)}(c)}{n!} = a_n, \text{ for all } n \in \mathbb{N}_0.$$

[7]

[5]

What does this mean for the power series?

3.2 What is the Taylor series of f at c? [3]

Problem 4 [30 marks]

4.1 State the Laurent series Theorem for a function of complex variable. [4]

4.2 Find the Laurent series of
$$f(z) = \frac{1}{1-z}$$
 for $1 < |z|$. [7]

4.3 Let $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ be defined by

$$f(z) := e^{-\frac{1}{z}}.$$

4.3.1 Find the Laurent series of f about $z_0 = 0$.

4.3.2 What kind of singularity is $z_0 = 0$? How does f behave in the vicinity of $z_0 = 0$? [5]

4.3.3 State the residue Theorem. [4]

$$\int_{C_1(0)} e^{-\frac{1}{\zeta}} d\zeta$$

END